Deep Learning und Neuronale Netze mit Python, Pandas, Keras und TensorFlow

Weiterbildung

Beschreibung

Inhalte

1. Einführung in das Deep Learning

  • Was sind neuronale Netze und wie lernen sie?
  • Mathematische Grundlagen kompakt erklärt
  • Neuronale Netze mit Keras und TensorFlow
  • Modelle: Evaluation und Anpassung
  • Modelle: Einsatz und Speicherung

2. Datenvorbereitung und Feature Extraction

  • Datenvorbereitung mit Pandas
  • Explorative Datenanalyse
  • Standardisierung von numerischen Daten und Textdaten
  • Feature Extraction: Merkmale aus Daten extrahieren
  • Netze mit geringen Datenmengen trainieren

3. Spezialisierte neuronale Netze

  • Konvolutionale neuronale Netze (CNN)
  • Aktualisierung von Gewichten bei CNNs
  • Max Pooling und Dropout
  • Anlernprozesse überwachen mit TensorBoard
  • Rekurrente neuronale Netze (RNN)
  • Zeitreihenanalyse und Textverarbeitung mit RNN

4. Modelle deployen und Transfer-Learning

  • Einsatz von Cloud-GPUs für Machine-Learning-Projekte
  • Einführung in Transfer Learning und Modell Zoo
  • Vorstellung von ImageNet, ResNet, VGG16
  • Vortrainierte Layers in eigenen Projekten nutzen

Weiterbildungslevel

Level 1
Level 2
Level 3
Level 4
Bei unseren Weiterbildungsangeboten unterscheiden wir unterschiedliche Levels

Level 1: Grundkenntnisse
Level 2: Anwenderkenntnisse
Level 3: Expertenkenntnisse
Level 4: Kenntnisse für Führungskräfte

ZU DEN ANBIETERN

Links zu den Weiterbildungsangeboten

https://www.haufe-akademie.de/skill-it/products/36445


Wenn die angebotene Weiterbildung nicht ihren Bedarf abdeckt, nehmen Sie bitte über diesen Link Kontakt mit uns auf. Wir werden Ihnen weiterhelfen.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram