Wer bisher nur wenig mit der Operationalisierung von ML-Projekten zu tun gehabt hat, erhält in diesem Workshop den Überblick und eine praxisorientierte Einführung. Kernthemen sind dabei:
Monitoring produktiver ML-Anwendungen: Funktioniert mein Modell auch in der echten Welt oder muss ich es nachjustieren?
Für die Umsetzung in den Hands-on-Übungen kommen verbreitete Werkzeuge wie dvc, mlflow, dagster, FastAPI und ONNX zum Einsatz. Aber auch weitere populäre Werkzeuge wie beispielsweise Airflow, Kubeflow sowie die Angebote der großen Cloud-Anbieter werden in Bezug auf die Fragestellungen eingeordnet.
https://www.tae.de/weiterbildung/it-digitalisierung/data-science/machine-learning-operations-mlops/