Machine Learning Operations (MLOps)

Weiterbildung

Beschreibung

Wer bisher nur wenig mit der Operationalisierung von ML-Projekten zu tun gehabt hat, erhält in diesem Workshop den Überblick und eine praxisorientierte Einführung. Kernthemen sind dabei:

  • Versionierung und Verwaltung von Daten, Experimenten und Modellen: Wie kann ich meine Daten und Modelle effektiv verwalten, ohne den Überblick über meine Änderungen zu verlieren?
  • Orchestrierung der verschiedenen Teilprozesse einer ML-Pipeline: Wie kann ich effizient meine Daten aufbereiten, mein Modell trainieren und Vorhersagen treffen – und das immer wieder von vorne?
  • MLOps-Praktiken für Continuous Delivery: Wie bekomme ich mein Modell in Produktion, und das regelmäßig, automatisch und zuverlässig?

Monitoring produktiver ML-Anwendungen: Funktioniert mein Modell auch in der echten Welt oder muss ich es nachjustieren?
Für die Umsetzung in den Hands-on-Übungen kommen verbreitete Werkzeuge wie dvc, mlflow, dagster, FastAPI und ONNX zum Einsatz. Aber auch weitere populäre Werkzeuge wie beispielsweise Airflow, Kubeflow sowie die Angebote der großen Cloud-Anbieter werden in Bezug auf die Fragestellungen eingeordnet.

Weiterbildungslevel

Level 1
Level 2
Level 3
Level 4
Bei unseren Weiterbildungsangeboten unterscheiden wir unterschiedliche Levels

Level 1: Grundkenntnisse
Level 2: Anwenderkenntnisse
Level 3: Expertenkenntnisse
Level 4: Kenntnisse für Führungskräfte

ZU DEN ANBIETERN

Links zu den Weiterbildungsangeboten

https://www.tae.de/weiterbildung/it-digitalisierung/data-science/machine-learning-operations-mlops/


Wenn die angebotene Weiterbildung nicht ihren Bedarf abdeckt, nehmen Sie bitte über diesen Link Kontakt mit uns auf. Wir werden Ihnen weiterhelfen.
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram